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Background: The development of the kidneys and 
other organs of the urinary tract also follow the natural 
rule of gene-environment-lifestyle interaction. Both 
intrinsic and extrinsic factors may be associated with the 
etiology of various kinds of urinary malformations. The 
environmental factors belong to extrinsic factors, which 
have attracted increasing attention from researchers.

Methods: Publications about urinary malformations 
were searched from databases such as PubMed, Elsevier, 
Chemical Abstract, Excerpta Medica, Chinese Hospital 
Knowledge Database and Wanfang Database.

Results: Urinary malformation is associated with low 
birth weight, maternal diseases, placental insufficiency, 
maternal drug exposure, and maternal exposure to 
environmental pesticides. Living environment and 
socioeconomic factors may also influence the incidence of 
urinary malformation.

Conclusion: It is important to understand the 
association of environmental factors with the development 
of the renal system and urinary malformation in order to 
decrease the incidence of urinary malformations.
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Introduction

Urinary malformations are the congenital 
anomalies of the kidneys and/or urinary 
tract. Human nephrogenesis completes at 

around 34-36 weeks of gestation.[1,2] Potter[3] divided 
urinary malformations into four types based on the 
anatomical and histological characteristics: renal 
agenesis, dysplastic kidneys, hypoplastic kidneys, and 
associated lower urinary tract anomalies. Both intrinsic 
and extrinsic factors may be associated with the 
etiology of urinary malformations. The development 
of the urogenital system also follows the natural rule 
of gene-environment-lifestyle interaction. In this 
article, we systematically reviewed the publications in 
databases including PubMed, Elsevier Web of Science, 
Chemical Abstract, Excerpta Medica , Chinese Hospital 
Knowledge Database and Wanfang Database about the 
environmental aspects of maternal and fetal factors 
involving in urinary malformations.

Low birth weight and urinary malformations
Human nephrogenesis completes at around 36 weeks 
of gestation. Low birth weight and/or prematurity is 
associated with various measures of kidney disease, 
including congenital urinary malformations.[4] The 
reduced number of nephrons is an increased risk of 
progressive renal disease.[5] An animal study found 
that despite the similar sizes of the kidney, intrauterine 
growth restriction (IUGR) piglets had fewer glomeruli 
(nephron) (43%), which was correlated with birth 
weight.[6] Hughson et al[7] reported that birth weight is a 
strong determinant of glomerular number (Nglom) and, 
thereby, glomerular size in the postnatal kidney can be 
detected by using human autopsy tissue. The Nglom in 
individuals is dependent upon maternal diseases affecting 
the kidney, and the nephron number is varied at birth and 
is therefore developmentally determined. An increase of 
per kg in birth weight was associated with an addition 
of 260 000 nephrons per kidney. The same group later 
investigated the relationship between maternal obesity, 
birth weight race, and hypertension-related renal 
structural changes in the United States; they found that 
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birth weight and gender, but not race, predicted the 
Nglom of the newborns.[8] A similar study[9] also showed 
that the kidneys of low birth weight neonates contained 
fewer glomeruli per unit area of kidney cortex than 
neonates with normal birth weight. It should be noted 
that part of the congenital urinary malformations 
could have resulted in the decrease in the glomerular 
number, and due to technological limitations, it is very 
difficult to clarify the direct relation between IUGR 
and the reduced number of nephrons. Hypospadias, 
a kind of urinary tract malformation, was found to 
be more common in infants with uniformly poor 
intrauterine growth. It was reported that the incidence 
of hypospadias in the NICU population increased by 
10 folds from 0.4% in 1987 to 4% in the first quarter of 
2000.[10] This increasing frequency of hypospadias and 
its association with poor intrauterine growth originating 
in early gestation suggests that common environmental 
factor(s) that have an impact on both conditions may be 
involved.

Low birth weight can be caused by various 
endocrine dysfunctions such as environmental thyroid 
dysfunction. There has been clinical evidence that 
environmental iodine deficiency causes environmental 
thyroid dysfunction, which is commonly observed in 
newborns with low birth weight. In humans, thyroid 
hormone (TH) plays many roles in different tissues at 
different developmental times,[11] and TH deficiency 
during development is associated with irreversible 
damage to virtually all organ systems. Pregnant women, 
developing fetuses, and newborns are the sensitive 
populations particularly at risk for TH disruption 
induced by environmental contaminants. A number of 
environmental contaminants with diverse structures 
have shown to decrease circulating levels of TH,[12] 
and human exposure to some of these chemicals is 
associated with altered serum profiles of TH.[13] Iodine 
is an essential element for the biosynthesis of TH. 
Environmental iodine deficiency causes endemic goiter, 
resulting in thyroid dysfunction and low birth weight 
in children born in regions of the world where dietary 
iodine deficiency is prevalent.[14]

Fetal environment and urinary malformations
Maternal nutritional status and amniotic fluid
Fetal growth and development is sensitive to fetal 
environment preliminary determined by maternal 
physiology and placental  funct ion.  Barker [15] 
hypothesized in early years that environmental cues 
during fetal development could permanently alter the 
functions of the developing fetus and affect adult renal 
function, which is termed "fetal programming". About 

80%-90% of the human incidence of IUGR is due 
to impaired nutrient perfusion through the placenta, 
leading to low birth weight in offspring as well as 
altered organ development, including reduced nephron 
number and impaired renal function.[16] Animal studies 
have proved that maternal nutritional deficiency leads 
to alterations in cell turnover and gene expression in the 
metanephros of the offspring, which is associated with 
a deficit in the final nephron number.[17]

Clinically, 1%-2% of women have significant 
malformation of the uterus, such as didelphic uterus 
or bicornuate uterus. It should be noticed that many 
genetic factors that cause bicornuate uterus also affect 
renal morphogenesis, leading to renal dysplasia and 
resultant oligohydramnios as well as further increasing 
the chances of other fetal malformations.[18] Fetal 
kidneys begin to develop around 5 weeks of gestation 
in humans, and fetal urination is the major source 
of amniotic fluid. Fetal anuria is one of the common 
causes of oligohydramnios. Renal tubular dysgenesis 
involves incomplete differentiation of proximal tubular 
nephron segments, often showing fetal anuria and 
subsequent oligohydramnios.[19,20] In this condition,  
marked hypotrophy of all nephron segments from the 
glomerulus to the connecting tubule can be observed 
under microscopy.[21]

Placental insufficiency
Vascular placental insufficiency is considered to be a 
common pathogenic factor in human IUGR, resulting in 
small-for-gestational-age (SGA) asymmetric newborns. It 
was proved that the glomeruli number was significantly 
reduced in the asymmetric IUGR rabbit fetuses, probably 
due to decreased renal vascular supply.[22] The kidney has 
been reported to be particularly sensitive to the effects 
of placental insufficiency during the late gestation when 
it undergoes rapid growth.[23] A number of studies have 
shown that placental insufficiency affects the embryonic 
patterning of the kidney.[24-26] Human fetuses with IUGR 
have increased renal medullary echogenicity that could 
result from decreased tissue oxygenation.[24] This is of 
clinical importance because patients with congenital 
renal malformations have unexplained renal medullary 
dysplasia,[25] which could result from IUGR-dependent 
effects on growth and patterning of the kidney medulla. 
Mice with placental insufficiency associated with genetic 
loss of Cited1 in the placenta were found to have renal 
medullary dysplasia caused by decreased oxygenation 
and increased apoptosis in the renal medulla.[26] This is 
possibly an evidence showing that placental insufficiency 
promotes renal medulla dysplasia. In rats, uteroplacental 
insufficiency induced by uterine vessel ligation 
was noted to result in nephron deficit in offspring, 
suggesting that perinatally growth-restricted offspring 
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may be susceptible to the onset of renal injury and renal 
insufficiency with aging in the absence of concomitant 
hypertension.[27]

Gestational diabetes
Congenital malformations occur more frequently in 
the offspring of diabetic mothers. However, gestational 
diabetes is known to play a controversial role in the 
development of urinary tract malformations. In vivo 
and in vitro studies on the potential adverse effects 
of hyperglycemia on kidney development in rats[28] 
revealed that exposure to hyperglycemia in utero can 
cause nephron deficit, which in turn may have renal 
consequences after birth. A prospective case control 
survey conducted in France assessed the role of insulin-
requiring gestational diabetes in the development of 
ureteric malformations after adjustment (an odds ratio: 
5.1; 95% confidence interval: 1.1-24.5)[29] and found 
that gestational diabetes is a risk factor for urinary tract 
malformations. A previous study[10] reported that infant 
growth parameters at birth (weight, head circumference, 
and length), along with maternal risk factors, are 
associated with changes in fetal growth, including 
maternal age, race, gestational diabetes, and maternal 
use of alcohol or tobacco or substance abuse during 
pregnancy. Furthermore, the study found a significant 
association between hypospadias and poor intrauterine 
growth. The growth restriction could be probably due to 
early gestation because there is a relative involvement 
of somatic (weight and length) and brain growth (head 
circumference). Nevertheless, this study did not find 
evidence of the association between gestational diabetes 
and hypospadias. Environmental factors associated with 
gestational diabetes include exposure to tobacco smoke 
in utero[30] and pregnant women's ability to follow a 
healthy lifestyle.[31] 

Maternal drug exposure
Nowadays, more and more pregnant women are receiving 
medications due to either complication of pregnancy or 
maternal diseases that existed prior to pregnancy. Some 
drugs may cross the placenta barrier, enter the fetal 
circulation, and alter the development of the kidneys. 
Fetal exposure to certain medications due to maternal 
diseases is another cause of urinary tract malformations; 
for example, abnormalities developed after intrauterine 
exposure to non-steroid anti-inflammatory drug (NSAIDs) 
such as indomethacin, ibuprofen, piroxicam, naproxen 
sodium, and aspirin. Maternal intake of NSAIDs may 
cause renal tubular dysgenesis (RTD) with incidences 
as high as 5.5%-8.3%.[19] In addition, the toxic effect of 
angiotensin-converting enzyme (ACE) inhibitors on the 
fetus during the second and third trimesters of pregnancy 

can lead to congenital abnormalities and renal failure. 
The incidence of RTD after exposure to ACE inhibitors 
was 10% of all published RTD cases.[32] In utero exposure 
to NSAIDs, ACE inhibitors, and specific angiotensin II 
receptor type 1 antagonists may affect renal structure and 
produce renal congenital abnormalities, including cystic 
dysplasia, tubular cystic dysplasia, tubular dysgenesis, 
and reduced nephron number.[33]

Other drugs may also cause fetal urinary tract 
malformations. It was reported that sons of women 
exposed to diethylstilbestrol in utero in a cohort of 
women with fertility problems had 21 times increased 
hypospadias risk, when compared with the control.[34] 
Adriamycin is an anthracycline antibiotic produced by 
the fungus Streptomyces peucetius, and an adriamycin 
rat model has been established for different organ 
anomalies, including urinary tract malformations such 
as congenital obstructive uropathy. A previous study[35] 
reported that maternal exposure to adriamycin resulted 
in urinary tract anomalies. The higher frequency 
occurred as the dose of adriamycin was increased 
(1.5 mg/kg of adriamycin per day yielded the highest 
number of hydronephrotic viable fetuses in rats).

Maternal exposure to environmental pesticides
Pregnant women's exposure to pesticides is unavoidable 
in agricultural countries. The occupational exposure of 
pregnant women to pesticides has been reported to result 
in placental insufficiency by reducing the synthesis 
of progesterone, lactogen, estriol as well as changes 
of placental tissue.[36] Studies[37-41] on the association 
between environmental pesticides and urinary tract 
malformations have focused on neonatal hypospadias. 
Hypospadias is a common congenital malformation 
of male urinary genitalia, and most of the cases have 
mixed etiology of monogenic and multifactorial forms, 
implicating both genes and environmental factors. In a 
number of developing countries, the use of pesticides is 
unavoidable. The cause-result relation between maternal 
exposure of pesticide and urinary tract malformation is 
contradictory. Being involved in agricultural activities, 
which increases the chance of being exposed to 
pesticides, seems to increase the risk of hypospadias.[38] 
Another study[39] has also reported that the prevalence 
of hypospadias seems to be higher in areas of intensive 
pesticides use or in agricultural areas. However, other 
studies[40,41] have found that both paternal exposure to 
pesticides before pregnancy and maternal occupational 
exposure to pesticides do not appear to be associated 
with hypospadias. Maternal exposure to water 
disinfection byproducts has been suggested to increase 
hypospadias risk, but most studies have provided little 
evidence for this association.[42,43]
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Natural/socioeconomic factors and urinary 
malformations
Ethic factors
The relationship between oligohydramnios and 
urinary tract malformations has been discussed 
earlier. Interestingly, one retrospective population-
based study had focused on the influence of season on 
oligohydramnios, and two distinct ethic groups (Jewish 
vs. Bedouin) living in the same area sharing the same 
level of healthcare services were compared.[44] It was 
concluded that oligohydramnios is significantly more 
common during the summer months than the rest of the 
seasons of the year, and Bedouin ethnicity was noted 
as an independent risk factor for oligohydramnios. 
Although the study did not report the incidence of 
urinary tract malformations based on its close association 
with oligohydramnios, it was reasonable to deduce that 
the congenital malformations including urinary tract 
malformation occurred more frequently in summer 
season and in Bedouin population.

There are countries with a comparatively high rate 
of consanguinity marriage in the world due to social 
reason or ethic traditions. It has been reported that there 
is an increased incidence of renal tubular dysgenesis 
in Galilee, which is considered to be associated with 
high consanguinity among parents.[19] The prevalence 
of lower urinary tract obstruction has been found to be 
significantly associated with the maternal ethnic group 
and deprivation, and is highest in the most deprived 
quintile.[45]

Environmental anoxia may cause glomeruli malformation
An an imal  s tudy [46] demons t ra t ed  tha t  r ena l 
development at birth in the mouse was similar to that 
of the mid-trimester human fetus when nephrogenesis 
remains incomplete. After systemic exposure of anoxia, 
the function of proximal tubular mitochondria was 
markedly impaired;[47] this probably caused progressive 
tubular destruction and widespread formation of 
atubular glomeruli.[48] A fetal lamb model of urinary 
tract obstruction also revealed that within 48 hours after 
urinary tract obstruction, ampullae in the nephrogenic 
zone dilated.[49] This dilatation distorted the ampullae, 
inhibiting their normal division, effectively preventing 
nephrogenesis, causing no formation of nephrons, and, 
hence, resulting in renal hypoplasia or aplasia.

In utero tobacco or alcohol exposure
Smoking is common in both developing and developed 
countries, and is associated with certain socioeconomic 
factors such as nationality, single vs. non-single, and 
status of employment. Smoking is persistently the 
leading cause of IUGR in developed countries.[50] During 

pregnancy, smoking rates were higher in young women 
who lived in single households, were unemployed and 
white.[51] There was a significant correlation between 
IUGR infants and placental insufficiency and maternal 
smoking, and the SGA rate was very high in women 
who smoked excessively.[52] In Canada, higher odds of 
preterm birth and SGA were noted to be associated with 
socioeconomic factors such as lower average income, 
lower level of education, and high alcohol intake.[53] 
Urinary tract malformations are more common in fetuses 
of mothers with high alcohol intake[54] and diabetes 
mellitus.[55]

Epidemiologic studies[56,57] have reported that 
pregnant women are more likely to consume alcohol 
in acute doses rather than in a chronic capacity. Fetal 
growth restriction has previously been demonstrated in 
animal models of prenatal ethanol exposure and in human 
patients with fetal alcohol syndrome.[58-60] However, 
the mechanism through which alcohol disrupts renal 
development is not very clear. It has previously been 
identified that altered ureteric branching morphogenesis 
is correlated with the changes in the levels of expression 
of genes critically involved in kidney development.[61] It 
has been reported that prenatal alcohol exposure impairs 
kidney development, resulting in reduced nephron 
number.[62] The underlying mechanism might be that 
the ethanol-induced inhibition of ureteric branching 
morphogenesis and glomerular development in the 
cultured rat kidney could have been ameliorated by co-
culture with exogenous RA. A study on the effects of 
acute ethanol exposure during pregnancy on nephron 
endowment and renal function in offspring[63] showed 
that at one month of age, the nephron number was 15% 
and 10% respectively, in ethanol-exposed males and 
females, when compared with the controls, possibly due 
to inhibited ureteric branching morphogenesis. Prenatal 
ethanol exposure is known to influence the activity of the 
hypothalamic-pituitary-adrenal axis, resulting in elevated 
maternal glucocorticoid levels.[64] Thus, it is plausible 
to suggest that the above-mentioned findings may be 
mediated at least in part by the actions of glucocorticoids. 
In addition, fetal ethanol exposure during the latter half of 
gestation has been reported to result in 11% reduction in 
nephron endowment without affecting the overall growth 
of the kidney, fetus, or the expression of key genes 
involved in renal development or function.[65]

Assisted reproductive technology (ART)
Assisted reproductive technologies (ARTs) usually 
involve hormonal stimulation. Studies[40,66] have 
shown that ARTs increase the risk of hypospadias. 
Furthermore, ART has been reported to be associated 
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with genomic imprinting disorders,[67] which could 
be another mechanism to increase hypospadias in 
ART. Vottero et al[68] reported that alterations in the 
methylation pattern of the androgen receptor gene leads 
to the abnormal expression of the gene in the foreskin 
tissue from hypospadias children, which may contribute 
to the development of hypospadias. With respect to 
ART, hypospadias appears to occur more frequently 
after microinsemination than after conventional IVF. 
Furthermore, with regard to microinsemination, the rate 
of hypospadias seems to be higher when epididymal 
or testicular sperms are used; when compared with 
ejaculated sperms,[69] it may be due to the fact that 
couples undergoing microinsemination usually suffer 
from severe male infertility, which is associated with 
hypospadias.

Human evolution involved exposure to physically 
demanding environment where infection, thermal 
stress, periods of food deprivation, and requirement to 
be physically active predominated. The development 
of the kidneys and other organs of the urinary tract also 
follows the natural rule of gene-environment-lifestyle 
interaction. The environmental factors mentioned in 
this review, which may be associated with urinary 
malformations, are summarized in Table. Urinary 
malformations also have a genetic basis[70] and may 
be inherited in a Mendelian manner, especially in 
multiorgan syndromes involving malformations of the 
renal system.[71,72] Over 30 specific genes have been 
identified in the development of the mammalian kidney 
and urinary tract.[73] 

Conclusions
This review addressed the environmental factors 
related to urinary malformations, not genetic factors. 
It is important to understand the association of 
environmental factors with the development of the renal 
system and urinary malformation.
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