Background: Systemic postnatal corticosteroid use in extremely preterm infants poses a risk of adverse neurodevelopmental outcomes. This study explores their use beyond seven days of age with early neurodevelopmental assessments during the fidgety period (9每20 weeks postterm age).
Methods: This retrospective single-center cohort study included inborn extremely preterm infants from 1 January 2014 to 31 December 2018. Outborn infants, those with congenital or genetic abnormalities, and those who received postnatal corticosteroids for nonrespiratory reasons were excluded. The cohort was dichotomized based on the status of corticosteroid receipt. Early neurodevelopmental outcomes were reported using Prechtl*s General Movements Assessment.
Results: Of the 282 infants, 67 (23.75%) received corticosteroids. Of these, 34 (50.75%) received them for dependency on invasive ventilation (intermittent positive-pressure ventilation), and the remainder received them for dependency on noninvasive ventilation continuous positive airway pressure (CPAP) or bi-level positive airway pressure (BiPAP). Abnormal or absent fidgety movements were observed in 13% of infants (7/54) who received corticosteroids compared to 2% of infants (3/146) who did not. An increased odds for an abnormal general movements assessment from corticosteroid use after adjusting for gestational age [adjusted odds ratio (aOR) = 5.5, 95% confidence interval (CI) = 1.14每26.56] was observed. The motor optimality scores differed between the two groups [corticosteroid group: 25.5 (23每26) versus no-corticosteroid group: 26 (24每28); z = −2.02]. A motor optimality score < 20 was observed in 14.8% of infants (8/54) in the corticosteroid group compared to 2% of infants (3/146) in the noncorticosteroid group. This difference was significant after adjustment for gestational age (aOR 5.96, 95% CI 1.28每27.74). Conclusions: Abnormal early neurodevelopment was observed in infants who received systemic postnatal corticosteroids. The relationship between these findings and other factors influencing early neurodevelopment needs further exploration.
|